High resolution MRI anatomy of the cat brain at 3Tesla

نویسندگان

  • Heather L. Gray-Edwards
  • Nouha Salibi
  • Eleanor M. Josephson
  • Judith A. Hudson
  • Nancy R. Cox
  • Ashley N. Randle
  • Victoria J. McCurdy
  • Allison M. Bradbury
  • Diane U. Wilson
  • Ronald J. Beyers
  • Thomas S. Denney
  • Douglas R. Martin
چکیده

BACKGROUND Feline models of neurologic diseases, such as lysosomal storage diseases, leukodystrophies, Parkinson's disease, stroke and NeuroAIDS, accurately recreate many aspects of human disease allowing for comparative study of neuropathology and the testing of novel therapeutics. Here we describe in vivo visualization of fine structures within the feline brain that were previously only visible post mortem. NEW METHOD 3Tesla MR images were acquired using T1-weighted (T1w) 3D magnetization-prepared rapid gradient echo (MPRAGE) sequence (0.4mm isotropic resolution) and T2-weighted (T2w) turbo spin echo (TSE) images (0.3mm×0.3mm×1mm resolution). Anatomic structures were identified based on feline and canine histology. RESULTS T2w high resolution MR images with detailed structural identification are provided in transverse, sagittal and dorsal planes. T1w MR images are provided electronically in three dimensions for unrestricted spatial evaluation. COMPARISON WITH EXISTING METHODS Many areas of the feline brain previously unresolvable on MRI are clearly visible in three orientations, including the dentate, interpositus and fastigial cerebellar nuclei, cranial nerves, lateral geniculate nucleus, optic radiation, cochlea, caudal colliculus, temporal lobe, precuneus, spinocerebellar tract, vestibular nuclei, reticular formation, pyramids and rostral and middle cerebral arteries. Additionally, the feline brain is represented in three dimensions for the first time. CONCLUSIONS These data establish normal appearance of detailed anatomical structures of the feline brain, which provide reference when evaluating neurologic disease or testing efficacy of novel therapeutics in animal models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Brain Magnetic Resonance Image (MRI) Segmentation via a Novel Algorithm based on Genetic and Regional Growth

Background: Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging.Objective: This study describes a new method for brain Magnetic Resonance Image (MRI) segmentation via a novel algorithm based on genetic and regiona...

متن کامل

Computed tomographic anatomy of the abdominal region of cat

The purpose of this study was to identify the anatomic structures of the abdominal region of cat throughcomputed tomography (CT) to be used by veterinary radiologists, clinicians and surgeons. The abdominalregion of four cats were scanned twice, with and without using contrast medium in a same position, usinghigh-resolution imaging protocol. Slice intervals were 11 mm and were adjusted so that ...

متن کامل

Brain Volume Estimation Enhancement by Morphological Image Processing Tools

Background: Volume estimation of brain is important for many neurological applications. It is necessary in measuring brain growth and changes in brain in normal/abnormal patients. Thus, accurate brain volume measurement is very important. Magnetic resonance imaging (MRI) is the method of choice for volume quantification due to excellent levels of image resolution and between-tissue contrast. St...

متن کامل

Diagnostic value of CT and MRI of Temporal Bone in Cochlear Implantation Candidates

Background Cochlear implantation is an approved treatment which can be used to treat severe to profound hearing loss. Imaging before cochlear implant surgery is very important in decision making and assessing the temporal bone anatomy for surgery. We aimed to assess the diagnostic value of high resolution CT scan (HRCT), and MRI of temporal bone in candidate pati...

متن کامل

High-field MRI of brain cortical substructure based on signal phase.

The ability to detect brain anatomy and pathophysiology with MRI is limited by the contrast-to-noise ratio (CNR), which depends on the contrast mechanism used and the spatial resolution. In this work, we show that in MRI of the human brain, large improvements in contrast to noise in high-resolution images are possible by exploiting the MRI signal phase at high magnetic field strength. Using gra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Neuroscience Methods

دوره 227  شماره 

صفحات  -

تاریخ انتشار 2014